A buffer zones, 77, 83 buried tanks, 81-81 Accelerating rate calorimeter, reactive clear responsibility for safety in design and chemicals, 88-89 operation, 75 Adsorption isotherms continuous analog measurement, 111 Scheutjens-Fleer lattice model, 173-174 critical instrument system, 113 self-consistent field theory, 188 diking for flammable liquids, 78-79 distance from residential areas, 83 Antisymmetric stress, 66 Autoignition temperatures, reactive dry quick-disconnect couplings, 124 chemicals, 90 emergency block valves, 118-120 enclosed flares, 103-104 expertise in, 74 R fail-safe valves, 113-114 flexible or expansion joints, 127 Bridging flocculation, 217 gaskets, 121-123 Brinkman equation, 29–30 glass and transparent devices, 126-127 Brittleness, low temperature, 105 hazard identification, 74-75 Bromotrifluoromethane, as extinguishing improving batch process productivity, agent, 100 91 - 92Brownian motion incinerating hazardous waste materials, dilute suspensions, 26 102 - 104momentum tracer methods, 60, 62-63 incorporation of emergency planning into, suspensions, 4 Bulk conductance, suspensions, 33 in situ production and consumption of Buried tanks, chemical plant design, 81-81 hazardous raw materials, 101-102 inventory reduction C by changing mixing intensity, 92-93 by changing process chemistry, 90-92 Cell models, 5 liquid storage, 78-79 suspensions, 21-22 liquified gas storage, 84-85 Centrosymmetric particles, suspensions, 45 low inventory in distillation processes, Charge neutralization, 217 93-94 Chemical plant design, 73-74 minimizing inventory in heat exchangers, adequate redundancy of instrument and 94-96 control systems, 110-114 open structures, plants using flammable or adequate space between process plants, combustible materials, 80-81 tanks, and roads, 76-77 piping, 120-121 avoiding catastrophic failure of plastic and plastic lined pipe, 124-125

pressure relief systems, 114-118

engineering materials, 104-110

Chemical plant design (continued) process and storage area construction, 83 pumps suitable for hazardous service, 128-133	Critical instrument system, 113 Cubic arrays, spatially periodic suspensions, 48-51
deadhead pumps, 133 metallurgy, 128	D
seal-less pumps, 128–129 types of seals, 129–132 reactive chemicals testing, 87–90 reactive hazard evaluations, 86 redesigning obsolete plants, 84 reduction of possibility of losses from dust explosions, 96–100 review alternatives early in, 75–76 safe and rapid isolation of piping systems or equipment, 118–120 shutdown, 112–113 single point signals, 111 spring-loaded check valves, 124 static mixer reactors, 93 strong vessels to withstand maximum pressure of process upsets, 125–126 substituting less hazardous materials in processes, transportation, and storage, 100–101 total containment, 83–84 triangular spacing between major process components, 77 understanding reactive chemicals and systems involved, 86–90 using minimum storage inventory of hazardous material, 78	Deadheaded pumps, 133 Deflagration pressure containment, 125–126 Derjaguin approximation, 204, 213 Diblock copolymer, 138–139 DIERS, 114–115 Differential scanning calorimetry, reactive chemicals, 88 Differential thermal analysis, reactive chemicals, 88 Diisopropyl peroxydicarbonate, 102 Dilute suspensions, rheological models, 23–27 Distillation processes, low inventory, 93–94 Double-seal pumps, 129, 131 Drude equations, 189–190 Dry quick-disconnect couplings, 124 Dust explosions combustion process, 96 containment, 97 inerting, 98–99 reactive chemicals, 90 reducing possibility of losses, 96–100 suppression systems, 99–100 venting, 97–98
valves, 123–124 worst case thinking, 86–87	E
Chemical potential, 176 Clusters, suspensions, 35 Coarse-graining, 148 Coefficient k_1 , 23–24 Collision sphere, 40 Colloids, see Polymer-colloid-solvent mixtures Combustible materials, open structures for plants, 80–81 Containment, dust explosions, 97 Continuity equation, averaged, suspensions, 7, 29 Continuum-mechanical principle of material-frame indifference, 67 Control systems, redundant, chemical plant design, 110–114 Copolymers, 138–139	Emergency block valves, 118-120 Emergency planning, incorporation into chemical plant design, 76 Empirical models, suspensions, 19-21 Enclosed flares, 103-104 Engineering materials avoiding catastrophic failure, 104-110 metals, 105-108 nonmetals, 108-109 plastic materials, 109-110 Resista-Clad, 107-108 Environmental Protection Agency, buried tank requirements, 82 Evolution equation, 54-55 Expansion joints, 127 Explosion doors, 98 Explosion suppression systems, 99-100

INDEX	
Extinguishing agent, used in dust explosions, 100	Homopolymer, see also Scheutjens-Fleer lattice model; Self-consistent field theory
F	conformation in solution, 137–138 randomly adsorbing, 157–197
Fail-safe valves, 113–114 Falling-ball suspension viscometry, 63–64 Fiberglass reinforced plastics, 110 Fickian diffusion tensors, 26–27	adsorbed amount and free energy, 165-167 adsorbing boundary condition, 159 adsorption energies and critical energy,
Fire-safe ball valve, 123 Flammable limits, reactive chemicals, 90 Flammable liquids, diking for, 78–79 Flammable materials, open structures for plants, 80–81	apparent surface volume fraction, 165 apparent viscosity, 220–222 architecture, 157 comparison with scattering
Flares, 103-104 Flash point, reactive chemicals, 90 Flixborough disaster, 78, 84 Flory-Huggins equation-of-state, 180-181 Flory-Huggins free energy of mixing, 152	measurements, 167–169 configurations, 157–158, 159 equilibrium and excluded volume, 161 Flory–Huggins theory, 164 free energy, 158, 163
Flory-Huggins mean-field theories, 152-153, 164, 191-193 Force-torque vector, 54 Fractal suspensions, 64-66 Free energy, randomly adsorbing	fundamental scaling prediction, 165 individual ideal chains, 158–161 interaction potentials, 166 lattice models and matrix methods, 161–164
homopolymers, 158	matrix of transition probabilities, 162 random walks, 159 scaling and renormalization group
Gaskets, chemical plant design, 121–123 Glass devices, 126–127 Glass-lined steel, 108–109 Grand resistance matrix, 45, 51–52	theories, 164–169 self-similarity, 164–165 structure factors, 167–168 surface tension, 165 tail length, 160 Hydrodynamic force, suspensions, 8
Н	Hydrodynamic thickness, 174–175, 191–192 Hydrogen embrittlement, metals, 106
Halon 1301, as extinguishing agent, 100 Hazardous materials	I
in situ production and consumption, 101-102	Incineration, hazardous waste materials, 102-104
substitution in processes, transportation, and storage, 100-101 using minimum storage inventory, 78	Inerting, dust explosions, 98–99 In situ manufacturing, 101–102 Institute for Emergency Relief Systems,
Hazardous waste materials, incineration, 102–104	114-115 Instrument systems, redundant, chemical
Hazards, identification, 74–75 Heat exchangers, 94–96 Helmholtz free-energy, 155–156, 175–176 self-consistent field theory, 191 Higee distillation process, 94 High pressure systems, 125	plant design, 110–114 Interaction potential nonadsorbing polymers, 207–208 polymer–colloid–solvent mixtures, 215 randomly adsorbing, polymers, 166 Scheutjens–Fleer lattice model, 176–178

nitrate stress corrosion, 107

Method of induced forces, 12

Microrheology, suspensions, 20

Momentum tracer methods, 57-64

falling-ball suspension viscometry, 63-64

Brownian motion, 60, 62-63

local gradient operator, 59

molecular diffusion, 60

Midland, MI explosion, 80-81

stress-crack corrosion, 105-106

Interaction potential (continued) no-slip boundary condition, 62 terminally anchored polymers, 202, 204 rigid-particle case, 62 versus gap half-width, 193-196 second-order total moment, 60-61 Internal spin field, 66 steady-state unit cell equations, 61 Inventory reduction Stokes equations, 59-60 by changing mixing intensity, 92-93 suspension-scale kinematic viscosity, by changing process chemistry, 90-92 58-69 distillation processes, 93-94 tensor fields, 61 heat exchangers, 94-96 transport equation, 61 storage, hazardous materials, 78 Momentum transport, suspensions, 34 N L Neuron-scattering experiments, Lattice models, 161-164 homopolymer, randomly adsorbing, Leaks, buried tanks, detection, 82 167-169 Leibniz packing, 64-65 Nitrate stress corrosion, metals, 107 Liouville equation, 15, 25 Nonmetals, 108-109 Liquid storage, design, 78-79 Liquified gases, storage, 84-85 Local gradient operator, 59 O Low Reynolds number hydrodynamics, many-body problem, 10-13 Osmotic pressure scaling theory, 146-148 self-consistent field theory, 192 M Macroscopic stress, suspensions, 17 P Macroscopic velocity gradient, 16 Magnetic fluids, vortex viscosity, 66-67 Particle stress, suspensions, 8 Many-body problem Partitioned matrix relation, 9 low Reynolds number hydrodynamics, Percolation models, 34-36 Percolation theory, 32-34 statistical formulation, 13-15 Phase function, suspensions, 28-29 Matrix method, 161-164 Phase separations, polymer-colloid-solvent Mechanical energy dissipation rate, dilute mixtures, 211-214 suspensions, 23 Phosgene, 100-101 Menger sponge, modified, 65-66 Piping, chemical plant design, 120-121 Metallurgy, pumps, 128 Plastic lined pipe, 124-125 Metals, 105-108 Plastic materials, 109-110 hydrogen embrittlement, 106 Plastic pipe, 125 low temperature brittleness, 105 Polyelectrolytes, 217

Polymer-colloid-solvent mixtures

Derjaguin approximation, 213

homopolymers, see Homopolymers

initial number density of polystyrene

bridging flocculation, 217

charge neutralization, 217

copolymers, 138-139

grafted layer, 219-220

lattices, 218

interaction potential, 215

maximum attraction limit, 213	terminally anchored, 197-205
minimum layer thickness, 216	boundary condition, 198
nonadsorbing polymer, see Polymers,	conformation, 197–198
nonadsorbing	density profiles, 203
PEO effects, 217-218	Derjaguin approximation, 204
phase separations, 211-214	end segment probability, 199
polymeric flocculation, 216-219	experimental results, 204-205
polymeric stabilization, 214-216	free energy, 201
polymer properties, 140	interaction potential, 202, 204
polystyrene latices, 211-212	interactions between layers, 202-204
ratio of equivalent hard sphere volume	isolated layers, 197-202
fraction to effective volume fraction,	segment density profiles, 200-201
220	solvent quality effect on thickness,
retarded dispersion potential between	199–200
spheres, 215–216	Poly(methyl methacrylate) spheres, 219-220
rheology, 219–224	Polystyrene latices
stability boundary, 213-214	equilibrium phase behavior, 211-212
terminally anchored, see Polymers,	initial number density, 218
terminally anchored	polymer-colloid-solvent mixtures,
thermodynamics, 140-156	211–212
dilute limit, 142	steady shear viscosities, 222-223
excluded volume parameter, 141	Pressure-relief systems
Flory mean-field theories, 152-153	ARC, 116
higher-order interactions, 142	chemical plant design, 114-118
polymer volume fraction, 143	isolation of safety valves, 118
1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 G. 115 110 110
random-walk model, 141	two-phase now, 115, 118–119
random-walk model, 141 renormalization-group theories,	two-phase flow, 115, 118-119 VSP, 116
renormalization-group theories,	VSP, 116
renormalization-group theories, 148–151	
renormalization-group theories, 148–151 scaling theory, 144–148	VSP, 116 Q
renormalization-group theories, 148–151 scaling theory, 144–148 self-consistent, mean-field theories,	VSP, 116
renormalization-group theories, 148-151 scaling theory, 144-148 self-consistent, mean-field theories, 153-156	VSP, 116 Q
renormalization-group theories, 148-151 scaling theory, 144-148 self-consistent, mean-field theories, 153-156 semidilute regime, 143-144	VSP, 116 Q
renormalization-group theories, 148-151 scaling theory, 144-148 self-consistent, mean-field theories, 153-156 semidilute regime, 143-144 temperature-concentration diagram,	VSP, 116 Q Quarter-turn valves, 123–124
renormalization-group theories, 148-151 scaling theory, 144-148 self-consistent, mean-field theories, 153-156 semidilute regime, 143-144 temperature-concentration diagram, 143-144	VSP, 116 Q Quarter-turn valves, 123–124 R
renormalization-group theories, 148-151 scaling theory, 144-148 self-consistent, mean-field theories, 153-156 semidilute regime, 143-144 temperature-concentration diagram, 143-144 universal models, 140-141	VSP, 116 Q Quarter-turn valves, 123–124
renormalization-group theories, 148-151 scaling theory, 144-148 self-consistent, mean-field theories, 153-156 semidilute regime, 143-144 temperature-concentration diagram, 143-144 universal models, 140-141 Polymeric flocculation, polymer-colloid-	VSP, 116 Q Quarter-turn valves, 123–124 R Random copolymer, 138–139 Random-walk model, 141 Reactive chemicals
renormalization-group theories, 148-151 scaling theory, 144-148 self-consistent, mean-field theories, 153-156 semidilute regime, 143-144 temperature-concentration diagram, 143-144 universal models, 140-141 Polymeric flocculation, polymer-colloid- solvent mixtures, 216-219	VSP, 116 Q Quarter-turn valves, 123–124 R Random copolymer, 138–139 Random-walk model, 141
renormalization-group theories, 148–151 scaling theory, 144–148 self-consistent, mean-field theories, 153–156 semidilute regime, 143–144 temperature-concentration diagram, 143–144 universal models, 140–141 Polymeric flocculation, polymer–colloid– solvent mixtures, 216–219 Polymeric stabilization, polymer–colloid–	Q Quarter-turn valves, 123–124 R Random copolymer, 138–139 Random-walk model, 141 Reactive chemicals accelerating rate calorimeter, 88–89 autoignition temperatures, 90
renormalization-group theories, 148–151 scaling theory, 144–148 self-consistent, mean-field theories, 153–156 semidilute regime, 143–144 temperature-concentration diagram, 143–144 universal models, 140–141 Polymeric flocculation, polymer-colloid- solvent mixtures, 216–219 Polymeric stabilization, polymer-colloid- solvent mixtures, 214–216	Q Quarter-turn valves, 123–124 R Random copolymer, 138–139 Random-walk model, 141 Reactive chemicals accelerating rate calorimeter, 88–89
renormalization-group theories, 148–151 scaling theory, 144–148 self-consistent, mean-field theories, 153–156 semidilute regime, 143–144 temperature-concentration diagram, 143–144 universal models, 140–141 Polymeric flocculation, polymer-colloid- solvent mixtures, 216–219 Polymeric stabilization, polymer-colloid- solvent mixtures, 214–216 Polymers nonadsorbing, 205–211 configuration density function, 205	Q Quarter-turn valves, 123–124 R Random copolymer, 138–139 Random-walk model, 141 Reactive chemicals accelerating rate calorimeter, 88–89 autoignition temperatures, 90
renormalization-group theories, 148–151 scaling theory, 144–148 self-consistent, mean-field theories, 153–156 semidilute regime, 143–144 temperature-concentration diagram, 143–144 universal models, 140–141 Polymeric flocculation, polymer-colloid- solvent mixtures, 216–219 Polymeric stabilization, polymer-colloid- solvent mixtures, 214–216 Polymers nonadsorbing, 205–211 configuration density function, 205 delineation of regimes, 209–210	Q Quarter-turn valves, 123–124 R Random copolymer, 138–139 Random-walk model, 141 Reactive chemicals accelerating rate calorimeter, 88–89 autoignition temperatures, 90 differential scanning calorimetry, 88
renormalization-group theories, 148–151 scaling theory, 144–148 self-consistent, mean-field theories, 153–156 semidilute regime, 143–144 temperature-concentration diagram, 143–144 universal models, 140–141 Polymeric flocculation, polymer-colloid- solvent mixtures, 216–219 Polymeric stabilization, polymer-colloid- solvent mixtures, 214–216 Polymers nonadsorbing, 205–211 configuration density function, 205	Q Quarter-turn valves, 123–124 R Random copolymer, 138–139 Random-walk model, 141 Reactive chemicals accelerating rate calorimeter, 88–89 autoignition temperatures, 90 differential scanning calorimetry, 88 differential thermal analysis, 88
renormalization-group theories, 148–151 scaling theory, 144–148 self-consistent, mean-field theories, 153–156 semidilute regime, 143–144 temperature-concentration diagram, 143–144 universal models, 140–141 Polymeric flocculation, polymer-colloid- solvent mixtures, 216–219 Polymeric stabilization, polymer-colloid- solvent mixtures, 214–216 Polymers nonadsorbing, 205–211 configuration density function, 205 delineation of regimes, 209–210 depletion layers, 205–208, 210–211 interaction between spheres, 205–206	Q Quarter-turn valves, 123–124 R Random copolymer, 138–139 Random-walk model, 141 Reactive chemicals accelerating rate calorimeter, 88–89 autoignition temperatures, 90 differential scanning calorimetry, 88 differential thermal analysis, 88 dust explosions, 90
renormalization-group theories, 148–151 scaling theory, 144–148 self-consistent, mean-field theories, 153–156 semidilute regime, 143–144 temperature-concentration diagram, 143–144 universal models, 140–141 Polymeric flocculation, polymer-colloid- solvent mixtures, 216–219 Polymeric stabilization, polymer-colloid- solvent mixtures, 214–216 Polymers nonadsorbing, 205–211 configuration density function, 205 delineation of regimes, 209–210 depletion layers, 205–208, 210–211 interaction between spheres, 205–206 interaction potential, 207–208	Q Quarter-turn valves, 123–124 R Random copolymer, 138–139 Random-walk model, 141 Reactive chemicals accelerating rate calorimeter, 88–89 autoignition temperatures, 90 differential scanning calorimetry, 88 differential thermal analysis, 88 dust explosions, 90 flammable limits, 90
renormalization-group theories, 148–151 scaling theory, 144–148 self-consistent, mean-field theories, 153–156 semidilute regime, 143–144 temperature-concentration diagram, 143–144 universal models, 140–141 Polymeric flocculation, polymer-colloid- solvent mixtures, 216–219 Polymeric stabilization, polymer-colloid- solvent mixtures, 214–216 Polymers nonadsorbing, 205–211 configuration density function, 205 delineation of regimes, 209–210 depletion layers, 205–208, 210–211 interaction between spheres, 205–206 interaction potential, 207–208 minimum in potential energy, 207, 211	Q Quarter-turn valves, 123–124 R Random copolymer, 138–139 Random-walk model, 141 Reactive chemicals accelerating rate calorimeter, 88–89 autoignition temperatures, 90 differential scanning calorimetry, 88 differential thermal analysis, 88 dust explosions, 90 flammable limits, 90 flash point, 90
renormalization-group theories, 148–151 scaling theory, 144–148 self-consistent, mean-field theories, 153–156 semidilute regime, 143–144 temperature-concentration diagram, 143–144 universal models, 140–141 Polymeric flocculation, polymer-colloid- solvent mixtures, 216–219 Polymeric stabilization, polymer-colloid- solvent mixtures, 214–216 Polymers nonadsorbing, 205–211 configuration density function, 205 delineation of regimes, 209–210 depletion layers, 205–208, 210–211 interaction between spheres, 205–206 interaction potential, 207–208 minimum in potential energy, 207, 211 overlap of depletion layers, 205–206	Q Quarter-turn valves, 123–124 R Random copolymer, 138–139 Random-walk model, 141 Reactive chemicals accelerating rate calorimeter, 88–89 autoignition temperatures, 90 differential scanning calorimetry, 88 differential thermal analysis, 88 dust explosions, 90 flammable limits, 90 flash point, 90 shock sensitivity, 89 testing, 87–90 Reactive hazard evaluations, 86
renormalization-group theories, 148–151 scaling theory, 144–148 self-consistent, mean-field theories, 153–156 semidilute regime, 143–144 temperature-concentration diagram, 143–144 universal models, 140–141 Polymeric flocculation, polymer-colloid- solvent mixtures, 216–219 Polymeric stabilization, polymer-colloid- solvent mixtures, 214–216 Polymers nonadsorbing, 205–211 configuration density function, 205 delineation of regimes, 209–210 depletion layers, 205–208, 210–211 interaction between spheres, 205–206 interaction potential, 207–208 minimum in potential energy, 207, 211 overlap of depletion layers, 205–206 rheological effects, 222	Q Quarter-turn valves, 123–124 R Random copolymer, 138–139 Random-walk model, 141 Reactive chemicals accelerating rate calorimeter, 88–89 autoignition temperatures, 90 differential scanning calorimetry, 88 differential thermal analysis, 88 dust explosions, 90 flammable limits, 90 flash point, 90 shock sensitivity, 89 testing, 87–90
renormalization-group theories, 148–151 scaling theory, 144–148 self-consistent, mean-field theories, 153–156 semidilute regime, 143–144 temperature-concentration diagram, 143–144 universal models, 140–141 Polymeric flocculation, polymer-colloid- solvent mixtures, 216–219 Polymeric stabilization, polymer-colloid- solvent mixtures, 214–216 Polymers nonadsorbing, 205–211 configuration density function, 205 delineation of regimes, 209–210 depletion layers, 205–208, 210–211 interaction between spheres, 205–206 interaction potential, 207–208 minimum in potential energy, 207, 211 overlap of depletion layers, 205–206	Q Quarter-turn valves, 123–124 R Random copolymer, 138–139 Random-walk model, 141 Reactive chemicals accelerating rate calorimeter, 88–89 autoignition temperatures, 90 differential scanning calorimetry, 88 differential thermal analysis, 88 dust explosions, 90 flammable limits, 90 flash point, 90 shock sensitivity, 89 testing, 87–90 Reactive hazard evaluations, 86

Renormalization-group theories (continued)	shearing in macro-couette apparatus, 35
osmotic pressure, 150-151	spatially periodic model, 35–36
scaling, 164-169	statistical models
semidilute solutions, 149	formal expansions, 28-31
Resista-Clad, 107-108	numerical calculations, 31–32
Rheological models of suspensions, 1-67, see	Stokesian dynamics, 54–57
also Momentum tracer methods;	Stokes problem, 25
Spatially periodic suspensions	suspension of spheres, 30
antisymmetric stress, 66	three-phase systems, 22
averaged continuity equation, 29	volume fraction, 21
averaging Stokes equations, 29	vortex viscosity, 66–67
bond percolation problems, 32-33	wave vector-dependent viscosity, 31
Brinkman equation, 29-30	Rheology
Brownian motion, 4	microrheology of suspensions, 20
bulk conductance, 33	polymer-colloid-solvent mixtures,
cell models, 5, 21-22	219–224
clusters, 35	suspensions, 44–47
coefficient k_1 , 23–24	Root-mean-square layer thickness, 173
complicating effects, 4	
continuum-mechanical principle of	s
material-frame indifference, 67	3
contribution of Brownian motion, 26	Scaling, renormalization group theories,
critical concentration, 35-36	164–169
dilute suspensions, 23-27	Scaling theory, 144–148
empirical models, 19-21	correlation length, 145-147
evolution equation, 54-55	crossover from dilute to semidilute,
Fickian diffusion tensors, 26-27	145-146
fixed particles, 30	density fluctuations, 145
force-torque vector, 54	osmotic pressure, 146-148
fractal suspensions, 64-66	Scheutjens-Fleer lattice model, 169-179
infinite viscosity prediction, 19-20	adsorbed amount, 171
inner zone dissipation, 22	adsorbed layer structure, 172-174
internal spin field, 66	adsorbed polystyrene, 178
Leibniz packing, 64–65	adsorption isotherms, 173-174
Liouville equation, 25	chemical potential, 176
long-time mean structure, 56	conclusions, 179
mechanical energy dissipation, 23	depth of attractive minimum, 176-177
modified Menger sponge, 65-66	force measurements, 176-178
momentum transport, 34	Helmholtz free energy, 175–176
Monte Carlo techniques, 31	interaction potential energy, 176–178
notation and scope, 5-6	interactions between layers, 174-178
particle-particle interactions, 23-24	lattice sites, 170
percolation models, 32–36	layer thickness, 173-175
application, 34–36	motivation and formulation, 169-172
theory, 32–34	nonlocal segment-solvent interactions, 171
percolation-theory approaches, 5	segment distribution, 172–173
phase function, 28-29	volume-fraction profiles, 172
relative viscosity, 22, 56	Seal-less pumps, 128–129
repulsive interparticle forces, 57	Sedimentation velocity, 26–27
sedimentation velocity, 26–27	Self-consistent field theory, 179–197
SPEAT-INGUICEG COUNCIONS 34	accuracy 196-197

adsorbed amount versus chain length	extranalation to infinite augmention 52
adsorbed amount versus chain length, 188–189	extrapolation to infinite suspension, 53
	force/torque balance, 52
adsorption isotherms, 188	generic formula, 46
chemical potential, 193	grand resistance matrix, 45, 51–52
configuration integral, 186–187	interaction of vector with unit square,
continuous and discontinuous surface	43–44
functions, 180	kinematical problems, 36–37
depth of attractive minima, 194–195	kinematics, 38–44
Drude equations, 189–190	latice configuration, 42–43
ellipsometric thickness as function of chain	latice deformation, 39
length, 190–191	macroscopic velocity gradient dyadic, 39
equation-of-state, 193	maximum density, 41–42
Flory-Huggins equation-of-state, 180–181	nonstatic, sheared systems, 40
ground state solutions, 183–184	no-slip boundary condition, 44
Helmholtz free energy, 191	perfect crystal problem, 37
hydrodynamic thickness, 191–192	rheology, 44–47
interaction potential energy versus gap	self-coincidence symmetry operations,
half-width, 193–196	38–39
interactions between layers, 191–195	simple shear flow, 42–43
isolated layers, 187–191	star body, 41
Laplace transforms, 185	Stokes equations, 45, 48
matched asymptotic expansion, 184-187	time dependence of particle configuration,
mixed boundary condition, 181–182	50
motivation and formulation, 179–183	touching-sphere limit, 50
osmotic pressure, 192	trajectory equation, 52
Ploehn–Russel model, 196	translational velocity, 44
sticky surface model, 180	two-dimensional, incompressible linear
volume fraction profiles, 187–188	flow, 40
Self-consistent, mean-field theories, 153–156	velocity field, 44
configuration integral, 154	Spiral wound gaskets, 121–122
equilibrium spatial distribution, 156	Spring-loaded check valves, 124
Helmholtz free energy, 155–156	Static mixer reactors, 93
Shear-induced particle diffusion, 20	Sticky surface model, 180
Shock sensitivity, reactive chemicals, 89	Stokes equations
Shutdown, large continuous processes,	averaging, 29
112–113	momentum tracer methods, 59–60
Silica, apparent viscosity of dispersions,	quasistatic, 7
220–222	spatially periodic suspensions, 45, 48
Single mechanical seals, 129–130	Stokesian dynamics, 54–57
Sleeve-type plug-cocks, 123	Stokes problem, 25
Spatially periodic model, 35–36	Stress coefficients, 56
Spatially periodic suspensions, 36–53	Stress-crack corrosion, metals, 105–106
adherence condition, 52	Stress tensor, suspensions, 8
centrosymmetric particles, 45	Suspensions, see also Rheological models of
coefficients, 49	suspensions
collision sphere, 40	basic equations and properties, 6–10
cubic arrays, 48–51	conditional probability density, 15
description, 38–39	configuration-dependent tensorial
dilute arrays, 49	quantity, 15
ergodic character of process, 47, 53	continuity equation, 7
extension to N particles in unit cell, $51-53$	homogeneous, volume averages, 16-17

hydrodynamic force, 8 incorporation of Brownian motion, 15 Liouville equation, 15 macroscopic stress, 17 macroscopic velocity gradient, 16 many-body problem, low Reynoldsnumber hydrodynamics, 10-13 method of induced forces, 12 microrheology, 20 particle-specific probability densities, 14 particle stress, 8 partitioned matrix relation, 9 position-independent velocity gradient, 6 quasistatic Stokes equation, 7 shear-induced particle diffusion, 20 statistical formulation, multiparticle problem, 13-15 stress coefficients, 56 stress tensor, 8 torque, 8 two-body methods, 10-12 two-sphere systems, 10 velocity field, 7-8 volumetric particulate number density, 14 Suspension theories, major reviews, 2-3 Styrene-butadiene latex, preparation, 91

T

Tandem-seal pumps, 131-132
Teflon, 109-110
envelope gaskets, 123
Tensor fields, momentum tracer methods, 61
Torque, suspensions, 8

Total containment, chemical plant design, 83-84
Trajectory equation, 52
Transparent devices, 126-127
Transport equation, momentum tracer methods, 61
Triblock copolymer, 138-139

U

Underground storage tanks, standards, 82 Unit cell equations, steady-state, 61

\mathbf{v}

Vacuum relief systems, 126
Valves, chemical plant design, 123–124
Venting, dust explosions, 97–98
Vent panels, 98
Viscosity
apparent, adsorbing homopolymer,
220–222
kinematic, 58–60
relative, 56
steady shear, polystyrene latices, 222–223
vortex, magnetic fluids, 66–67
wave vector-dependent, 31
Vortex viscosity, magnetic fluids, 66–67

W

Worst case thinking, chemical plant design, 86-87